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Here we have three antiphase boundaries 
(1[0,½,½),(110,0, ½) and (110,½,0) . 

The actual shape and extension of the domains are 
not determined by symmetry alone and are controlled 

by local elastic energy (i.e. bond energy) minimiz- 
ation. The weak energy of van der Waals bonds 
strongly suggests that most of the small perturbations 
in the arrangement of octahedra and molecular 
groups due to the domain boundaries occurs mainly 
through them. 

It should be noticed that, in addition to these 
domain structures essentially due to the transition, 
there may also appear independently twins by 
pseudomerohedry because of the close values of a 
and b on the one hand and of bm and cm on the other. 
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Abstract 

An estimate of the number of independent structural 
parameters that can be determined from a fiber 
diffraction pattern is derived and its application is 
demonstrated. At resolutions where independent esti- 
mates can be made for the intensity of every layer 
line, this number is set by sampling limits along each 
layer line [Makowski (1982). J. Appl. Cryst. 15, 546- 
557]. At resolutions beyond which separation of 
intensities due to individual layer lines is possible 
(the deconvolution limit) there may still be usable 
structural information in the pattern. Even though 
intensities on individual layer lines cannot be 
uniquely determined from these data, the data may 
still represent useful constraints on structural models 
of the diffracting particles. Here it is shown that 
beyond the deconvolution limit the total number of 
structural parameters obtainable increases linearly as 
a function of resolution. 

0108-7673/91/050562-06503.00 

Introduction 

Every diffuse arc of intensity in a fiber diffraction 
pattern has the potential for acting as a constraint on 
models of the diffracting object. Quantitative 
measurement of the intensity of a reflection can be 
made to some limiting resolution dependent on the 
distribution of reflections in reciprocal space and the 
degree of disorientation in the specimen. The limiting 
resolution is set by the degree of overlap that can be 
corrected using a numerical deconvolution procedure 
(Makowski, 1978). Reflections falling beyond this 
deconvolution limit cannot be accurately measured 
because their overlap with neighbors due to dis- 
orientation cannot be corrected by any numerical 
procedure. Nevertheless, it is clear that in many cases 
substantial structural information exists in the diffrac- 
ted intensity beyond this limit. Fig. 1 is a diffraction 
pattern from a fiber of the Pap adhesion pili from 
E. coli. With angular deconvolution (Makowski, 1978), 
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it is possible to measure the intensities along layer 
lines in this pattern to about 30/~ spacing. However, 
there is strong discernible intensity in the diffraction 
pattern well beyond this spacing and intensity can be 
seen to extend beyond 3/~ spacing in stronger 
exposures. Currently, the intensity beyond the decon- 
volution limit is used only qualitatively to estimate 
the prevalence of various structural patterns in a fiber 
(e.g. Marvin, 1966; Henderson, 1975). Refinement of 
structural models directly against the optical densities 

on the film (rather than the intensities along layer 
lines) provides a potential method for utilizing the 
intensities beyond the deconvolution limit (e.g. 
Tibbitts, Caspar, Phillips & Goodenough,  1988). The 
design and testing of structural models refined against 
data extending beyond the deconvolution limit must 
take into account the number of independent intensity 
measurements that can be made in this region of the 
pattern. In this paper, an estimate of the number of 
independent structural parameters measurable from 

Fig. 1. Diffraction pattern from the Pap adhesion pili from E. coil (taken by M. Gong). The axial repeat for this specimen is 240.5 ~,. 
The disorientation in this pattern corresponds to cr = 6.0 °. 
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a fiber diffraction pattern to any resolution is derived 
and its application demonstrated. 

Analysis of intensities at a single radius 

For simplicity, the treatment here is limited to diffrac- 
tion from a partially oriented specimen of helical 
objects of diameter d and axial repeat c with random 
orientation about their long axes. Diffraction from a 
specimen of this type is limited to layer planes separ- 
ated by a distance of 1/c in reciprocal space. These 
planes are observed as layer lines at their intersection 
with the Ewald sphere. The layer lines will be assumed 
to be vanishingly thin and the effect of the beam size 
will be ignored. Under these conditions, the distribu- 
tion of intensity in reciprocal space can be expressed 
as the sum of contributions from all reflections, 
l~(r, ~) ,  plus a background term, 

D(r, q~) = y~ 4 ( r ,  qh)f(~o, qpi)-~- B(r, ~), (1)  

where r is the distance from the origin of reciprocal 
space and ~o is the angle about the center of the 
diffraction pattern in reciprocal space. The intensity 
distribution function, f(~0, ~) ,  describes the spread- 
ing of the intensity as a function of angle ¢ from a 
reflection falling at (r, ~o~) which causes it to contribute 
to the measured signal at (r, ~o). Except near the 
meridian (Stubbs, 1974; Holmes & Barrington-Leigh, 
1974; Makowski, 1978), (1) can be treated as a convol- 
ution [i.e. f(~o,~o,)~f(~o-~0i)] and in many cases 
f(~o - ¢~) can be closely approximated by a Gaussian 
function. In that case, (1) becomes 

O(r, ~o) = Y" l~(r, q~,) exp [-(~o - ~ , )2/2or2]+ B(r, q~). 

(2) 

Under most conditions, the background can be 
measured or expanded as a sum of a small number 
of terms. When that is the case, measurement of a 
sufficiently large number of D(r, ~o) allows an estima- 
tion of the L(r, ~o;) by inversion of a matrix with 
elements representing the appropriate values of 
f(~o, ~o~). Below the deconvolution limit, inversion of 
this matrix represents a well posed problem, readily 
solved. Above the deconvolution limit, the inversion 
becomes highly sensitive to experimental errors and 
ultimately results in arbitrarily large errors in the 
estimated intensities (Makowski, 1978). If the back- 
ground is circularly symmetric or accurately 
measured, it will not affect the following derivation 
and, consequently, is not included. 

At any radius below the deconvolution limit, the 
total number of structural parameters that can be 
derived is equal to the number of independent 
intensities at that radius (the number of layer lines 
intersected by a circle at that spacing). Intensities at 
adjacent radii may not be independent of one another 
and that issue is addressed below. Beyond the decon- 
volution limit, the total number of structural param- 

eters that can be estimated will be less than the 
number of layer lines intersecting a circle at that 
spacing. To demonstrate this, (2) is rewritten for a 
radius, r, as (ignoring background) 

Dr(~)=exp(-q~2/2o'2)* ~, l,(r, ~i)tS(~o-~,) (3) 

where • denotes convolution. If one takes D,(~o) to 
be defined for all ~o, D, is periodic with period rr. If 
one defines the repeating unit of Dr to be in the 
interval ( - r r / 2 ,  ~'/2), the Fourier transform, @r(~) 
of the repeating unit of Dr is real and equal to 

~ r ( I ] ) )  = (2rro-2)'/2[exp (_20r2rr2~2)] 

x ~[Z I,(r, q::,,)6(q::, - q::,,)], (4) 

where ff denotes a Fourier transform and the sum 
extends over all reflections (layer lines) within the 
interval ( -7r /2 ,  ~/2).  • has units of reciprocal 
radians and is the reciprocal variable to ~. 

If one defines £ = 1/2rrtr, 

~ r ( q ~ )  = (2rr-,Y2) '/2[exp ( -  ~2/2.,y2)] 

x~[y~ 4(r ,  ,#,)s(~, - , # , ) ] .  (5) 

Information about the li is contained in the Fourier 
transform of the/ , .  This information is degraded due 
to multiplication by the Gaussian, exp (-qb2/22 2) 
which tends to zero for q~ >> 2;. 

Dr is mirror symmetric about all points at which 
~o = nTr/2 for all integers n (meridian and equator; 
Dr is defined in reciprocal space and consequently 
does not depend on tilt of specimen). Consequently, 
the Fourier transform of a single repeating unit of 
Dr(~o), @r(q~), is a real function. From the Shannon 
sampling theorem and the period, rr, of Dr, its Fourier 
transform, ~r(qO), is a band-limited function and is 
completely determined by its samples at intervals of 
1/rr. Each of these samples corresponds to an 
independent structural parameter. Because @r(qb) 
tends to zero for @ >> 2, there is a limited number of 
structural parameters that can be measured in the 
presence of noise. Below the deconvolution limit, the 
samples ~r (j/rr) can be used to determine all L ( r, ¢,). 
Beyond the deconvolution limit, the number of 
samples, @r(j/Tr), that can be accurately estimated 
is less than the number of layer lines. Analysis of the 
properties of ~ r ( ~ )  provides an estimate for the 
maximum number of structural parameters obtain- 
able at any radius. The actual number depends on 
the quality of the data, since the fundamental limit 
is the amplification of noise due to division by the 
Gaussian, exp (--~2/222).  In particular, at any given 
radius, the layer-line intensities are derivable as 

[~ l,(r, ~ , ) 6 ( ~ -  ~,)] 

= ~ ; [ ( 2 7 " l ' , ~ 2 ) ' / 2 ~ r ( q ~ ) / e x p  (-@2/222)].  (6) 

For large values of qb, the noise amplification due to 
division by the Gaussian is limiting. 
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Let the largest factor by which noise can be reason- 
ably amplif ied in the analysis  of  a diffraction pattern 
be e. In (6), any noise in @r(q~) is mult ipl ied by 

e = 1/exp ( -qb2/2~2) .  (7) 

For any given choice of  e, the max imum number  of 
structural parameters,  N, obta inable  at ANY radius 
in a fiber diffraction pattern is given by 

e = exp (N2/2,Y,2rr2). (8) 

Since there are ( N~ 7r) independent  samples of  ~r(q~) 
out to a l imiting value of q), it follows that 

N=[2rr2221n(e)]t/2=[ln(e)/2]~/2/o.. (9) 

Iff(q~) is not a Gauss ian,  then e is related to ~ [ f (q~) ]  
in an obvious way. For a diffraction pattern with a 
s tandard deviat ion of particle orientation equal to or 
(=1/27r2;) ,  N is the m a x i m u m  number  of layer lines 
that can be separated using angular  deconvolution.  
At values of r below the deconvolut ion limit, the 
number  of  structural parameters  is equal to the num- 
ber of  layer lines intersecting a circle at radius r. 
Beyond the deconvolut ion limit, the number  of struc- 
tural parameters  that can be estimated is a constant 
equal to N. This limit compares  with the empir ical  
limit est imated earlier (Makowski ,  1978) of 

N =  1/[sin (1-5o")], (10) 

which, for small  values of  o., is 

N = 1 / ( 1 . 5 o - ) =  2 - r r -Y /1 .5 .  ( 1 1 )  

Equating the two estimates of N, we find that 
the earlier empir ical  est imate of N resulted in 
amplif icat ion of  a small  proport ion of the noise in 
the data by a factor of  e = 2.25. Fig. 2 is a plot of  N 

NJ 5O 

o ~o ° 2o ° 

Fig. 2. The m a x i m u m  n u m b e r  o f  structural  pa ramete r s  measurab le  
at a single radius,  N(0-),  as a funct ion of  the s tandard  deviat ion 
of  part icle or ienta t ion  in the diffracting spec imen,  ca lcula ted  
f rom equat ion  (9) for e = 2-25. Since the deconvolu t ion  limit is 
p ropor t iona l  to N, r ,m . is a very sensitive funct ion o f  or ienta t ion  
for 0 - < 5  ° . 

as a function of o.. Fig. 3 shows an example  of the 
analysis of  data along a single radius (0.05 ,~ ~) of 
a diffraction pattern from a specimen with axial repeat 
of  240-5/k (as for the diffraction pattern in Fig. 1) 
for the cases ofo. = 0.75, 1.5, 3-0 and 6.0 °. The density 
on this circle is, assumed to be a set of  Gaussians ,  
each centered at the posit ion of  a layer line, as dis- 
cussed above. The Fourier  t ransforms of these distri- 
butions are also shown as an indicat ion of the amount  
of  informat ion in each angular  distribution. The 
extent of  the Fourier  t ransform is strongly dependen t  
on the distr ibution of orientat ions in the specimen.  
Given that an independent  structural parameter  can 
be obtained from samples  every 1/7r, (11) indicates 
that N is 51, 25, 13 and 6 for the four cases. Since 
the m a x i m u m  number  of layer lines that can con- 
tribute to this radius is 13, a complete estimate of all 
layer-line intensities should be possible for tr < 3.0 °. 
For disorientat ion with o ->3 .0  ° , the number  of 
independent  parameters  that can be est imated is less 
than the number  of layer lines at this radius. 

N u m b e r  o f  s tructural  parameters  as a funct ion  o f  radius  

Below the deconvolut ion limit, the total number  of 
independent  measurements  in a fiber diffraction pat- 
tern can be roughly est imated by assuming that 
independent  intensities occur at intervals of  1/2d 
along each layer line, where d is the diameter  of  the 
diffracting particle. This is an overestimate because 
there is no informat ion in the near-meridional  data 
for the distance from the meridian,  R <(n+2)/Trd 
(Makowski ,  1982), where n is the lowest order of  
Bessei funct ion contr ibut ing to the layer line. To a 
radius of r less than the radius of the deconvolut ion 
limit ( t ' l imit)  , the number  of  independent  intensities 
estimated in this manner  is 

N (  r < rumit ) = 7rc d r2~2 ,  (12) 

where c is the axial repeat of  the diffracting particle. 
Equation (12) states the obvious result that, for a 
two-dimensional  data set, the number  of independent  
observations increases with the square of  the resol- 
ution. 

Beyond the resolution limit, the number  of  struc- 
tural parameters  observable at a given radius is a 
constant,  so that N(r> r l imit)  must increase l inearly 
with resolution. Consequent ly ,  once the deconvol- 
ution limit is reached, the derivative of N(r) is a 
constant and N(r> r,mit) may be written as 

N ( r >  rlimit) = "B'c d r l i m i t 2 / 2  

+ "n'c d r ,m i t ( r -  rlimit). (13) 

Fig. 4 contains plots of  N(r) for diffraction patterns 
from tobacco mosaic virus and f i lamentous bac- 
teriophage Pfl. 
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Discussion 

In this paper, the first quantitative measure of the 
amount of information measurable beyond the decon- 
volution limit of a fiber diffraction pattern has been 
presented. This measure will be important in testing 
structural models of scattering units based on diffrac- 
ted data extending to the highest possible resolution. 
It is important to point out here that, just because 
the number of structural parameters theoretically 
expected can be estimated, it does not necessarily 
mean that useful data will exist beyond the deconvol- 
ution limit. The intrinsic disorder in a molecular 

system can result in the fading of diffraction maxima 
as a function of resolution and the resolution beyond 
which there is no observable intensity is not directly 
related to the deconvolution limit. For instance, in 
the diffraction pattern from Pap pill in Fig. 1, the 
observable intensities extend well beyond the decon- 
volution limit. However, in most diffraction patterns 
from filamentous bacteriophage Pfl, the intensity of 
reflections falls off sharply beyond about 3.3 ~ spacing. 
In the best-oriented specimens, the deconvolution 
limit is at about 3/~ spacing. Nevertheless, there is 
no means for extracting useful structural information 
beyond the point at which the intensities fade. 
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Fig. 3. Model density distributions for a single radius as a function of  angle about the center of the diffraction pattern and their Fourier 
transforms. The calculation was done for a particle with the helical symmetry of Pap pill as determined from the diffraction pattern 
in Fig. 1 for a variety of  disorientations. The plots on the left are the density distributions, as calculated with the standard deviation 
of  orientation indicated. The plots on the right are the Fourier transforms of  the density distributions. The theory presented in the 
text indicates that an independent structural parameter can be determined from each sample of these Fourier transforms, with the 
samples separated by 1/7r. The limited extent of the Fourier transforms of density distributions with ~r = 3"0 and o" = 6-0 ° is graphic 
demonstration of the effect of  greater degree of  disorientation on the information in the density distribution. 
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The number  of  structural  parameters  measurable  
from a fiber diffraction pattern ultimately depends  
on the choice of  e, the amoun t  of  noise amplif ication 
that can be tolerated in estimation of layer-line 
intensities from raw data.  That  number  depends  
directly on the signal-to-noise ratio of  the original 
data.  In a previous analysis (Makowski ,  1978), the 
intensities along layer lines were plotted as a function 
of  distance from the meridian.  Near  the deconvol- 
ution limit, the noise in these est imated layer lines 
was greatly amplified. However,  experience has indi- 
cated that this is not always the case and that system- 
atic errors may be amplified and that this 

T M V  

© 
o o12 o'3 0'.4 d5 

R (~,4) 

Fig. 4. The total number of structural parameters derivable from 
fiber dittraction patterns from tobacco mosaic virus (TMV) and 
filamentous bacteriophage Pfl as a function of resolution. For 
this calculation, tr was set to 1.4 ° for both specimens. The larger 
number of parameters measurable for TMV is largely a result 
of its larger diameter (180 A compared to 65 A for Pfl). 

amplif ication does not vary greatly with r a d i u s - i t  
does not result in an apparen t  increase in noise levels 
along a layer line. In the analysis of  most fiber diffrac- 
tion pat terns using angular  deconvolut ion,  we have 
found that using a value of  e = 3 results in acceptable  
results, but this may not always be the case. A compar-  
able value is likely to be appropr ia te  for estimates of  
structural parameters  beyond  the deconvolut ion limit. 

The analysis presented here does not directly 
address  the question of  how to use the measurable  
structural parameters  beyond the deconvolut ion limit. 
Equat ion (6) represents an indeterminant  set of  
equat ions for the layer-line intensities beyond the 
deconvolut ion limit. The measurable  structural  par- 
ameters represent  a partial  set of  data,  from which 
intensities cannot  be completely derived. However,  
they also represent  a set of  constraints on the structure 
of  a helical assembly that with proper  statistical tests 
can be used to constrain or refine (Tibbitts et al., 
1988) the structure of  a diffracting unit. The rapidly 
increasing availability of  comput ing  power  will pro- 
vide the means  for using these data.  This paper  pro- 
vides a quanti tat ive estimate of  the amount  of  infor- 
mation contained in the observable data  beyond the 
deconvolut ion limit. 

The au thor  thanks M. Gong  for the use of  the 
diffraction pat tern in Fig. 1. This work is suppor ted  
by a grant from the Nat ional  Science Foundat ion .  
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Abstract  

A phase-ref inement  method  based on Sayre 's  squar- 
ing equat ion and on a suggestion made  by Hoppe  [Z. 
Kristallogr. (1963), 118, 121-126] is presented.  It takes 

advantage  of  a lot of  informat ion initially known 
about  a crystal structure such as all the measured  
s tructure-factor  magni tudes  and the atomicity con- 
straint implicit in Sayre 's  equation.  The method  
assumes that any squared structure factor [F(H)[ 2 can 
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